翻訳と辞書
Words near each other
・ Maximus Musicus
・ Maximus of Aveia
・ Maximus of Constantinople
・ Maximus of Ephesus
・ Maximus of Hispania
・ Maximus of Jerusalem
・ Maximus of Moesia
・ Maximus of Naples
・ Maximus of Pavia
・ Maximus of Rome
・ Maximus of Salzburg
・ Maximus of Turin
・ Maximus of Tyre
・ Maximus of Évreux
・ Maximum common edge subgraph problem
Maximum common subgraph isomorphism problem
・ Maximum Contaminant Level
・ Maximum Conviction
・ Maximum coverage problem
・ Maximum cut
・ Maximum Darkness
・ Maximum demand indicator
・ Maximum density
・ Maximum Destruction
・ Maximum Diner
・ Maximum disjoint set
・ Maximum Downside Exposure (MDE)
・ Maximum Drive
・ Maximum elevation figure
・ Maximum engineering data rate


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Maximum common subgraph isomorphism problem : ウィキペディア英語版
Maximum common subgraph isomorphism problem
In complexity theory, maximum common subgraph-isomorphism (MCS) is an optimization problem that is known to be NP-hard. The formal description of the problem is as follows:
Maximum common subgraph-isomorphism(''G''1, ''G''2)
* Input: Two graphs ''G''1 and ''G''2.
* Question: What is the largest subgraph of ''G''1 isomorphic to a subgraph of ''G''2?
The associated decision problem, i.e., given ''G''1, ''G''2 and an integer ''k'', deciding whether ''G''1 contains a subgraph of at least ''k'' vertices isomorphic to a subgraph of ''G''2 is NP-complete.
One possible solution for this problem is to build a modular product graph, in which the largest clique represents a solution for the MCS problem.
MCS algorithms have a long tradition in cheminformatics and pharmacophore mapping.
==See also==

*Graph isomorphism problem
*Subgraph isomorphism problem
*Molecule mining
*Maximum common edge subgraph problem

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Maximum common subgraph isomorphism problem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.